Thanks for downloading this resource!

The zip folder that you've just opened contains a PDF file with interactive features.

In a move towards offering an even more versatile spread of resources, some of our worksheets feature interactive fields that can be filled in on computers and smart devices, without having to print the page. Follow the guidance in the next column for a smooth, stress-free means of accessing this content using free-to-download PDF reading software.

Step 1: C Mac (or se the down experience

Step 2: Op
If you are Acrobat R select Adob

the following liy Jownload

Step 3: Complete the resource!
For PC/Mac users: To fill in the resou click the text fields and type you swers as needed. Check boxes and radio bu selection of your choice and for anything else which, upon being clicked, will reveal specific instrucm respond to see the que ake th the corresponding question or activity. When you are finished with the resource, go to File > Save As... and save your file in a memorable location.
For smart device users: To fill in the resource, follow the same process as described above. When you are finished, simply press the back button in the top left of the appscreen and your PDF will save automatically.

Remember: Saving your PDF will overwrite the original file, so be sure to create a copy before starting if you wish to keep a blank copy of the resource on your device.
We hope you have found this information useful. If you experience any problems in following the instructions above, please contact the Beyond team at and we will do our best to help with your query.

Speed, Distance, Time Answers

Unless otherwise stated, give your answer to any speed questions in kilometres per hour (km/h).

1. Calculate the average speed of a car travelling 100 km in 2 hours.
```
\frac{100}{2}=50km/h
```

2. Calculate the average speed of a rambler who travels 12 km in 3 hours.

$$
\frac{12}{3}=4 \mathrm{~km} / \mathrm{h}
$$

3. Calculate the average speed of a train travelling 25 km in 20 minutes. 20 mins $=\frac{1}{3}$ of an hour $25 \div \frac{1}{3}=75 \mathrm{~km} / \mathrm{h}$
4. Calculate the distance travelled by a cyclist travelling at $7 \mathrm{~km} / \mathrm{h}$ for 5 hours. $7 \times 5=35 \mathrm{~km}$
5. Calculate the distance travelled by a swimmer swimming at $3 \mathrm{~km} / \mathrm{h}$ for 30 minutes.

30 minutes $=\frac{1}{2}$ an hour $3 \times \frac{1}{2}=1.5 \mathrm{~km}$
6. Calculate how long it would take for a car to travel 50 km if it was travelling at an average speed of $20 \mathrm{~km} / \mathrm{h}$. Give your answer in minutes.
$\frac{50}{20}=2.5$ hours
2.5 hours $=150$ minutes
7. Calculate how long it would take a runner to run 5 km if they were running at an average speed of $4 \mathrm{~km} / \mathrm{h}$. Give your answer in hours and minutes.
$\frac{5}{4}=1.25$ hours
1.25 hours $=1$ hour 15 minutes
8. Emma travels from Newcastle to London, a distance of 283 miles, by car. It takes her 4 hours and 20 minutes. Pete does the same journey by train. The train travels 285 miles at an average speed of 90 mph .
a. Assuming Emma and Pete leave at the same time, who will arrive in London first?

$$
\begin{aligned}
\text { time } & =\text { distance } \div \text { speed } \\
& =285 \div 90 \\
& =3.166 \ldots \text { hours } \\
& =3 \text { hours } 10 \text { minutes }
\end{aligned} \text { Pete will arrive first. }
$$

b. Explain why Pete's speed is an average speed.

The train will stop at stations so the speed will not be constant.
c. Find Emma's average speed in miles per hour. Give your answer correct to 1 decimal place.

4 hours and 20 minutes $=4.33$... hours

```
speed = distance % time
    = 283 \div4.33....
    = 65.3mph (1d.p.)
```

9. Sofia can run 200 metres in 26 seconds.
a. Estimate the time it will take her to run 300 m , giving your answer in seconds.

$$
\begin{aligned}
\text { speed } & =\text { distance } \div \text { time } \\
& =200 \div 26 \\
& =7.69 \ldots \text { seconds } \\
\text { time } & =\text { distance } \div \text { speed } \\
& =300 \div 7.69 \ldots \\
& =39 \text { seconds }
\end{aligned}
$$

b. Sofia says, "It will take me 3 minutes 15 seconds to run 1500 m ". Do you agree with Sofia?
$1500 \div 300=5$
$39 \times 5=195$ seconds
= 3 minutes and 15 seconds
Mathematically, Sofia is correct. However, physically, it is unlikely that she would be able to maintain the same speed over a much longer distance.

Challenge

Mira is sailing from Liverpool, England to Liverpool, Canada. They want to beat their personal record of 43 days, 4 hours and 23 minutes. The total distance is 2792 miles.

Unfortunately, Mira has trouble with their boat and has to stop the voyage at St John's, Canada. Mira has been sailing for 31 days, 8 hours and 34 minutes and has travelled a distance of 2175 miles.

Was Mira on track to beat their personal record?

```
Liverpool, England \(\rightarrow\) Liverpool, Canada
43 days \(=\mathbf{4 3} \times 24=1032\) hours
23 minutes \(=23 \div 60\)
    \(=0.383 .\). hours
Total time = 1032 + 4 + 0.383...
    = 1036.383... hours
Speed \(=2792 \div 1036.383 . . .=2.69 \mathrm{mph}\) (2d.p.)
```

Liverpool, England \rightarrow St John's, Canada
31 days $=31 \times 24=744$ hours
34 minutes $=34 \div 60$
$=0.566 \ldots$... hours
Total time $=744+8+0.566 \ldots$
= 752.566... hours
Speed $=2175 \div 752.566 \ldots=2.89 \mathrm{mph}$ (2d.p.)

Yes, Mira was on track to beat their previous record.

Speed, Distance, Time

Prior Knowledge:

- Be able to confidently multiply and divide integers and decimals.
- Be able to multiply and divide integers and decimals by powers of 10.
- Be able to substitute into formulae.

The speed of an object is how far an object travels in 1 unit of time. The unit of time can be anything - days, minutes, hours or even years. Usually, you see questions where 1 unit of time is 1 hour or 1 second.

You have probably seen speed limit signs on the road. In the UK, these are in miles per hour (mph). For example, a 30 mph limit means you should travel no more than 30 miles in one hour.

The speed of sound is $343 \mathrm{~m} / \mathrm{s}$ (metres per second). This means that, every second, a sound wave will travel 343 m . In 2 seconds, it will travel 686m; in 10 seconds, it will travel 3430 m ; and so on.

To find the speed of an object, you divide the distance travelled by the time taken. Many people prefer to remember the formula:

$$
\text { Speed }=\frac{\text { Distance }}{\text { Time }}
$$

However, you might prefer to use this formula triangle to help you:

Example 1: Jerry cycles 8 km in 30 minutes. Calculate his speed, giving your answer in kilometres per hour.

Jerry's distance is 8 km and his time is 30 minutes. However, the question specifies that our answer must be in kilometres per hour so we have to start by changing 30 minutes into hours.

30 minutes $=\frac{1}{2}$ or 0.5 of an hour
speed $=\frac{\text { distance }}{\text { time }}$
$=\frac{8}{0.5}=16 \mathrm{~km} / \mathrm{h}$

By covering up each variable in the formula triangle, we can see the formula to calculate it. For example, if we cover up time, we are left with D over S, so time $=\frac{\text { distance }}{\text { speed }}$

Example 2: Beth travels at $2 \mathrm{~m} / \mathrm{s}$ for 2 minutes. Find the distance travelled in metres.

This time, we are asked to find the distance. Covering distance in the formula triangle gives us speed and time on the bottom row of the triangle. Therefore, distance $=$ speed \times time

However, note that the speed is in metres per second and the time taken is in minutes. To carry out an accurate calculation, these measurements should be in the same unit. In this example, it is easier to convert our 2 minutes to seconds. There are 60 seconds in a minute so 2 minutes is equivalent to 120 seconds.

$$
\begin{aligned}
\text { distance } & =\text { speed } \times \text { time } \\
& =2 \times 120 \\
& =240 \mathrm{~m}
\end{aligned}
$$

Your Turn

Unless otherwise stated, give your answer to any speed questions in kilometres per hour (km/h).

1. Calculate the average speed of a car travelling 100 km in 2 hours.
\square
2. Calculate the average speed of a rambler who travels 12 km in 3 hours.
\square
3. Calculate the average speed of a train travelling 25 km in 20 minutes.
4. Calculate the distance travelled by a cyclist travelling at $7 \mathrm{~km} / \mathrm{h}$ for 5 hours.
\square
5. Calculate the distance travelled by a swimmer swimming at $3 \mathrm{~km} / \mathrm{h}$ for 30 minutes.
\square
6. Calculate how long it would take for a car to travel 50 km if it was travelling at an average speed of $20 \mathrm{~km} / \mathrm{h}$. Give your answer in minutes.
\square
7. Calculate how long it would take a runner to run 5 km if they were running at an average speed of $4 \mathrm{~km} / \mathrm{h}$. Give your answer in hours and minutes.

8. Emma travels from Newcastle to London, a distance of 283 miles, by car. It takes her 4 hours and 20 minutes. Pete does the same journey by train. The train travels 285 miles at an average speed of 90 mph .
a. Assuming Emma and Pete leave at the same time, who will arrive in London first?
b. Explain why Pete's speed is an average speed.

c. Find Emma's average speed in miles per hour. Give your answer correct to 1 decimal place.
\square
9. Sofia can run 200 metres in 26 seconds.
a. Estimate the time it will take her to run 300 m , giving your answer in seconds.
\square
b. Sofia says, "It will take me 3 minutes 15 seconds to run 1500 m ". Do you agree with Sofia?

Challenge

Mira is sailing from Liverpool, England to Liverpool, Canada. They want to beat their personal record of 43 days, 4 hours and 23 minutes. The total distance is 2792 miles.

Unfortunately, Mira has trouble with their boat and has to stop the voyage at St John's, Canada. Mira has been sailing for 31 days, 8 hours and 34 minutes and has travelled a distance of 2175 miles.

Was Mira on track to beat their personal record?

Speed, Distance, Time

Prior Knowledge:

- Be able to confidently multiply and divide integers and decimals.
- Be able to multiply and divide integers and decimals by powers of 10.
- Be able to substitute into formulae.

The speed of an object is how far an object travels in 1 unit of time. The unit of time can be anything - days, minutes, hours or even years. Usually, you see questions where 1 unit of time is 1 hour or 1 second.

You have probably seen speed limit signs on the road. In the UK, these are in miles per hour (mph). For example, a 30 mph limit means you should travel no more than 30 miles in one hour.

The speed of sound is $343 \mathrm{~m} / \mathrm{s}$ (metres per second). This means that, every second, a sound wave will travel 343 m . In 2 seconds, it will travel 686 m ; in 10 seconds, it will travel 3430 m ; and so on.

To find the speed of an object, you divide the distance travelled by the time taken. Many people prefer to remember the formula:

$$
\text { Speed }=\frac{\text { Distance }}{\text { Time }}
$$

However, you might prefer to use this formula triangle to help you:

Example 1: Jerry cycles 8 km in 30 minutes. Calculate his speed, giving your answer in kilometres per hour.

Jerry's distance is 8 km and his time is 30 minutes. However, the question specifies that our answer must be in kilometres per hour so we have to start by changing 30 minutes into hours.

30 minutes $=\frac{1}{2}$ or 0.5 of an hour
speed $=\frac{\text { distance }}{\text { time }}$
$=\frac{8}{0.5}=16 \mathrm{~km} / \mathrm{h}$

By covering up each variable in the formula triangle, we can see the formula to calculate it. For example, if we cover up time, we are left with D over S, so time $=\frac{\text { distance }}{\text { speed }}$

Example 2: Beth travels at $2 \mathrm{~m} / \mathrm{s}$ for 2 minutes. Find the distance travelled in metres.

This time, we are asked to find the distance. Covering distance in the formula triangle gives us speed and time on the bottom row of the triangle. Therefore, distance $=$ speed \times time

However, note that the speed is in metres per second and the time taken is in minutes. To carry out an accurate calculation, these measurements should be in the same unit. In this example, it is easier to convert our 2 minutes to seconds. There are 60 seconds in a minute so 2 minutes is equivalent to 120 seconds.

$$
\begin{aligned}
\text { distance } & =\text { speed } \times \text { time } \\
& =2 \times 120 \\
& =240 \mathrm{~m}
\end{aligned}
$$

Your Turn

Unless otherwise stated, give your answer to any speed questions in kilometres per hour (km/h).

1. Calculate the average speed of a car travelling 100 km in 2 hours.
\qquad
\qquad
\qquad
\qquad
2. Calculate the average speed of a rambler who travels 12 km in 3 hours.
\qquad
\qquad
\qquad
\qquad
3. Calculate the average speed of a train travelling 25 km in 20 minutes.
\qquad
\qquad
\qquad
\qquad
4. Calculate the distance travelled by a cyclist travelling at $7 \mathrm{~km} / \mathrm{h}$ for 5 hours.
\qquad
\qquad
\qquad
\qquad
5. Calculate the distance travelled by a swimmer swimming at $3 \mathrm{~km} / \mathrm{h}$ for 30 minutes.
\qquad
\qquad
\qquad
\qquad
6. Calculate how long it would take for a car to travel 50 km if it was travelling at an average speed of $20 \mathrm{~km} / \mathrm{h}$. Give your answer in minutes.
\qquad
\qquad
\qquad
\qquad
7. Calculate how long it would take a runner to run 5 km if they were running at an average speed of $4 \mathrm{~km} / \mathrm{h}$. Give your answer in hours and minutes.
\qquad
\qquad
\qquad
\qquad
8. Emma travels from Newcastle to London, a distance of 283 miles, by car. It takes her 4 hours and 20 minutes. Pete does the same journey by train. The train travels 285 miles at an average speed of 90 mph .
a. Assuming Emma and Pete leave at the same time, who will arrive in London first?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Explain why Pete's speed is an average speed.
\qquad
\qquad
\qquad
c. Find Emma's average speed in miles per hour. Give your answer correct to 1 decimal place.
\qquad
\qquad
\qquad
\qquad
\qquad
9. Sofia can run 200 metres in 26 seconds.
a. Estimate the time it will take her to run 300 m , giving your answer in seconds.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Sofia says, "It will take me 3 minutes 15 seconds to run 1500 m ". Do you agree with Sofia?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Challenge

Mira is sailing from Liverpool, England to Liverpool, Canada. They want to beat their personal record of 43 days, 4 hours and 23 minutes. The total distance is 2792 miles.

Unfortunately, Mira has trouble with their boat and has to stop the voyage at St John's, Canada. Mira has been sailing for 31 days, 8 hours and 34 minutes and has travelled a distance of 2175 miles.

Was Mira on track to beat their personal record?
\qquad

